

Вихревые конфигурации в жидкости и нелинейные явления

Говорухин В.Н.

Кафедра теоретической и компьютерной гидроаэродинамики Институт математики, механики и компьютерных наук имени И.И.Воровича Южный федеральный университет г.Ростов-на-Дону

«Нелинейные дни в Саратове для молодых — 2023»

15 мая 2023 г.

Математические модели вихревой динамики невязкой несжимаемой жидкости

- Простейшая математическая модель вихревой динамики
- Уравнения Эйлера динамики невязкой несжимаемой жидкости
- Вихревая динамика в контролируемом канале

2 Численные методы и алгоритмы

- Расчёт динамики. Метод точечных вихрей
- Расчёт динамики. Спектрально-вихревой метод
- Расчёт динамики жидкой частицы
- Тестовые расчеты
- Методы исследования структуры течения

Вихревые структуры и нелинейные явления

- Процессы перемешивания и переноса
- Стационарные течения
- Диссипативные эффекты

→ Ξ → < Ξ →</p>

< 4 P ►

э

Плоские вихревые структуры

G.J.F. van Heijst, J.B. Flor. Dipole formation and collisions in a stratified fluid. Nature 340, 212-215 (1989); S. Le Dizes, Non-axisymmetric vortices in two-dimensional flows, J. Fluid Mech. 406 (2000); G.J.F. van Heijst, R.C. Kloosterziel, C.W.M. Williams. J. Fluid Mech. 225 (1991)

Нелинейные явления 000000 0000000000000000

Простейшая модель

Простейшая математическая модель вихревой динамики

Кирхгофом предложена модель N точечных вихрей на плоскости:

$$\omega_i \dot{x}_i = \frac{\partial H}{\partial y_i}, \ \omega_i \dot{y}_i = -\frac{\partial H}{\partial x_i}, \ H = -\frac{1}{4\pi} \sum_{\substack{i,j=1, i \neq j}}^N \omega_i \omega_j \ln(r_{ij}), \ i = 1...N.$$
(1)

 (x_i, y_i) – координаты вихря с номером i, $r_{ij} = (x_i - x_j)^2 + (y_i - y_j)^2$, ω_i – его интенсивность. H – гамильтониан системы (1). ω_i и $(x_i(t_0), y_i(t_0))$ можно рассматривать как параметры. Они определяют величину интегралов системы, т.е. подпространства на которых происходит динамика. (1) обладает ещё тремя первыми интегралами:

$$Q = \sum_{i=1}^{N} \omega_i x_i, \quad P = \sum_{i=1}^{N} \omega_i y_i, \quad I = \sum_{i=1}^{N} \omega_i (x_i^2 + y_i^2). \tag{2}$$

Простейшая модель

Система (1) порождает поле скорости на плоскости, которое воздействует на пассивные частицы. Функция тока для частицы:

$$\Psi = -\frac{1}{4\pi} \sum_{i=1}^{N} \omega_i \ln[(x - x_i)^2 + (y - y_i)^2], \qquad (3)$$

где (x, y) – координаты пассивной частицы на плоскости. То есть, динамика частицы описывается двумя обыкновенными дифференциальными уравнениями

$$\dot{x} = \frac{\partial \Psi}{\partial x} = -\frac{1}{2\pi} \sum_{i=1}^{N} \omega_i \frac{y - y_i}{(x - x_i)^2 + (y - y_i)^2}$$

$$\dot{y} = -\frac{\partial \Psi}{\partial y} = -\frac{1}{2\pi} \sum_{i=1}^{N} \omega_i \frac{x - x_i}{(x - x_i)^2 + (y - y_i)^2}$$
(4)

Уравнения (4) и (1) образуют систему.

Нелинейные явления

Уравнения Эйлера динамики невязкой несжимаемой жидкости

Уравнения Эйлера

Динамика плоских течений невязкой несжимаемой жидкости описывается уравнениями в терминах завихренности $\omega(t, x, y)$ и функции тока $\psi(t, x, y)$ системой уравнений Эйлера

$$\frac{D\omega}{Dt} \equiv \omega_t + \psi_y \omega_x - \psi_x \omega_y = 0, \quad \omega = -\Delta \psi$$
(5)

Первое уравнение (5) означает, что завихренность переносится пассивно жидкой частицей.

Компоненты скорости жидкости $\mathbf{v} = (v_1, v_2)$ выражаются через ψ (6) $\mathbf{v}_1 = \psi_{\mathbf{v}}, \quad \mathbf{v}_2 = -\psi_{\mathbf{x}}.$ Завихренность в двумерном случае определяется как $\omega = \frac{\partial v_2}{\partial x} - \frac{\partial v_2}{\partial y}$. Для уравнений (5) рассматриваются различные задачи (области течения,

краевые и начальные условия...)

88

Методы и алгоритмы

< ∃ →

Уравнения Эйлера динамики невязкой несжимаемой жидкости

Задача вихревой динамики на всей плоскости В случае всей плоскости из (5) получаем:

$$\psi = \int_{R} G\left(z - z'\right) \omega\left(z', t\right) dz', \quad G(z) = \frac{1}{2\pi} \log |z|.$$
(7)

Дифференцируя (7) получаем выражение для скорости:

$$\vec{v} = (v_1, v_2) = -\int_R K(z - z') \,\omega(z', t) \,dz', \quad K(z) = \frac{(-y, x)}{2\pi |z|^2}$$
(8)

Завихренность $\omega(x_i, y_i)$ сохраняется в каждой частице, а их динамика описывается уравнениями

$$\dot{x}_i = v_1(x_i, y_i), \ \dot{y} = v_2(x_i, y_i)$$
 (9)

Задача в канале

Вихревая динамика в контролируемом канале

Граничные условия Юдовича [Юдович, 1963] Сторона x = 0 – вход в канал ∂D_+ , а x = a – выход из канала ∂D_- . Стороны y = 0 и y = b – непроницаемые стенки.

• Условия на ∂D_+ :

$$\omega|_{x=0} = \omega_{+}(y), \quad v_{1}|_{x=0} = \gamma_{+}(y)$$
(10)

где $\gamma_+(y)>0$ при $0\leq y\leq b.$

• Условия на остальных частях границы:

$$v_1|_{x=a} = \gamma_-(y), \quad v_2|_{y=0,b} = 0$$
 (11)

где $\gamma_-(y)>0$ при $y\in [0,b]$

Функции γ_- and γ_+ удовлетворяют условию:

$$\int_0^b \gamma_+(y) \, dy = \int_0^b \gamma_-(y) \, dy$$

Задача в канале

Граничные условия в терминах функции тока:

$$\begin{array}{ll} \psi \mid_{x=0} = g_1(y) = \int_0^y \gamma_+(y) \, dy, & \psi \mid_{x=a} = g_2(y) = \int_0^y \gamma_-(y) \, dy, \\ \omega \mid_{x=0} = \omega_+(y), \ \psi \mid_{y=0} = 0, & \psi \mid_{y=b} = \Gamma, \ \Gamma = \int_0^b \gamma_-(y) \, dy \end{array}$$

 Φ ункция тока задана на всей границе ∂D

$$\psi|_{\partial D} = \psi^{\partial D}. \tag{12}$$

Граничное условие для завихренности ω задано только на части границы ∂D_+ :

$$\omega|_{\partial D_+} = \omega^{\partial D_+}.\tag{13}$$

Начальное условие для завихренности задано в начальный момент времени

$$\omega|_{t=0} = \omega_0(x, y) \tag{14}$$

Невязкая диссипация:

При протекании частицы жидкости вносят завихренность и энергию в

область течения через вход, и выносят их при выходе.

Метод точечных вихрей

Метод точечных вихрей

Для дискретизации (5) область ненулевой завихренности при t = 0 разбивается равномерной с шагом h прямоугольной сеткой. Значение завихренности в каждой ячейке с номером i аппроксимируется $\delta-\phi$ ункцией сконцентрированной в узле с координатами (x_i, y_i) , и принимающей значение ω_i . Для вычисления интеграла (8) применяется простая квадратурная формула. Система метода точечных вихрей:

$$\frac{dx_i}{dt} = -\frac{1}{2\pi} \sum_{j \neq i} \frac{\omega_j (y_i - y_j)}{(x_i - x_j)^2 + (y_i - y_j)^2}, \frac{dy_i}{dt} = \frac{1}{2\pi} \sum_{j \neq i} \frac{\omega_j (x_i - x_j)}{(x_i - x_j)^2 + (y_i - y_j)^2}.$$

11 / 52 Говорухин В.Н. Вихревые конфигурации в жидкости и нелинейные явления

- < ⊒ →

Метод точечных вихрей

Плюсы и минусы вихревых методов

- Алгоритмическая простота
- Свобода в распределении частиц
- Консервативность
- Адекватное описание вихревой динамики
- Возможность анализа Лагранжевой динамики жидкости
- Возможность сопряжения с другими методами и алгоритмами
- Особенность поля скорости при совпадении частиц
- Алгоритмическая сложность $O\left(N^2\right)$
- 'Неуправляемость' частиц
- Сложность получения поля скорости частиц для других областей

Спектрально-вихревой метод

Спектрально-вихревой метод

Для дальнейшего удобно провести замену

$$\psi = \Psi + \psi^{\partial D} \tag{15}$$

Тогда второе уравнение в (5) примет вид

$$\Delta \Psi = -\omega - \Delta \psi^{\partial D}, \tag{16}$$

при условиях на границы для Ψ

$$\Psi|_{\partial D} = 0. \tag{17}$$

'Вихревая' часть метода

- Функция $\omega(x, y)$ аппроксимируется значением завихренности в маркерных частицах с координатами $(x_i(t), y_i(t))$.
- Функция тока определяется из уравнения (16).
- Движение частиц описывается системой обыкновенных дифференциальных уравнений

$$\dot{x}_i = \psi_y(x_i, y_i) = v_1, \qquad \dot{y}_i = -\psi_x(x_i, y_i) = v_2$$
 (18)

Спектрально-вихревой метод

Построение поля скорости

'Спектральная' часть метода

Для решения задачи (16), (17) в каждый момент времени *t* используется метод Бубнова-Галеркина.

$$\Psi \approx \widetilde{\Psi} = \sum_{i=1}^{k_x} \sum_{j=1}^{k_y} \Psi_{i,j} g_{ij}(x, y)$$
(19)

В области D и условиях (17) базисные функции

$$g_{ij}(x,y) = \sin\left(i\pi x/a\right) \sin\left(j\pi y/b\right)$$
(20)

Подставив (19) и (20) в (16) и применив стандартные операции проектирования на базисные функции получим коэффициенты $\Psi_{i,j}$:

$$\Psi_{ij} = \left[\int_{0}^{a} \int_{0}^{b} \Delta \psi^{\partial D} g_{ij}(x, y) \, dy \, dx + \int_{0}^{a} \int_{0}^{b} \omega(x, y) g_{ij}(x, y) \, dy \, dx\right] \times \frac{4ab}{\pi^2 (i^2 b^2 + j^2 a^2)}$$
(21)

Спектрально-вихревой метод

Аппроксимация поля завихренности

Область D разбивается на N_{box} прямоугольных ячеек, где $N_{box} = nx \times ny$. В каждой ячейке с номером $k \ \omega(x, y)$ приближается функцией

$$\omega(x,y) \approx \sum_{k=1}^{N_{box}} \phi_k(x,y) = \sum_{k=1}^{N_{box}} \sum_{l,m=0,l+m\leq 3}^{3} a_{k,l,m} x^l y^m.$$
(22)

Методы и алгоритмы 000● 0000 Нелинейные явления 000000 0000 00000000000000000

▲ 글 ▶ | ▲ 글 ▶

Спектрально-вихревой метод

Коэффициенты *а*_{*k,l,m*} находятся методом наименьших квадратов как минимум

$$S_{k} = \sum_{n} \left(\sum_{l,m=0,l+m\leq 3}^{3} a_{k,l,m} x_{n}^{l} y_{n}^{m} - \omega(x_{n}, y_{n}) \right)^{2}$$
(23)

Суммирование производится по номерам частиц, попавших в ячейку с номером k.

После получения $a_{k,i,j}$ интеграл $I_{i,j}$ приближается как

$$I_{ij} \approx \sum_{k=1}^{N_{box}} \sum_{l,m=0,l+m \leq 3}^{3} \int_{-a/2}^{a/2} \int_{-b/2}^{b/2} a_{k,l,m} x^{l} y^{m} g_{ij}(x,y) dx dy.$$
(24)

Для базисных функций (20), интеграл в (24) легко вычисляется аналитически.

Расчёт динамики жидкой частицы

Расчёт динамики жидкой частицы

После определения коэффициентов $\Psi_{i,j}$ поле скорости жидких частиц в момент времени t имеет вид

$$\dot{\kappa}_{i} = \tilde{v}_{1} = \sum_{i=1}^{k_{x}} \sum_{j=1}^{k_{y}} \Psi_{i,j} \frac{\partial g_{ij}}{\partial y} + \psi_{y}^{\partial D},$$

$$\dot{\nu}_{i} = \tilde{v}_{2} = -\sum_{i=1}^{k_{x}} \sum_{j=1}^{k_{y}} \Psi_{i,j} \frac{\partial g_{ij}}{\partial x} - \psi_{x}^{\partial D}$$
(25)

Система является гамильтоновой с гамильтонианом $ilde{\Psi}+\psi^{\partial D}.$

Фундаментальное свойство таких систем сохранение фазового объема или симплектичность.

Пример.

$$\dot{p} = -q, \dot{q} = p, H = p^2/2 + q^2/2$$

Пусть $H(p^{(k)}, q^{(k)}) = C$
Явный метод Эйлера.
 $H(p^{(k+1)}, q^{(k+1)}) = \dots = C + \frac{h^2}{2} \left(q^{(k)^2} + p^{(k)^2}\right)$
Неявный метод Эйлера.
 $H(p^{(k+1)}, q^{(k+1)}) = \dots = C \frac{1}{1+h^2}$

Расчёт динамики жидкой частицы

Выбор метода решение задачи Коши для динамики жидких частиц

- Сохранение фазового объема (консервативности) крайне важно.
- Симплектические методы являются неявными, и их использование затруднительно в данной задаче.
- Возникает вопрос о выборе наилучшего метода при одинаковых вычислительных затратах для расчета динамики жидких частиц.

Были проведены численные эксперименты по сравнению результатов решения системы (25) разными методами решения ряда тестовых задач – стационарные течения в прямоугольнике, вихрь Рэнкина, диполь Ламба.

Нелинейные явления 000000 0000 0000000000000000

э

∢ 臣 ≯

- (日) (二) (二)

Расчёт динамики жидкой частицы

PS36 – псевдосимплектический метод 3-го порядка точности, сохраняющий фазовый объем с 6-тым порядком точности; RK4 – Метод Рунге-Кутта 4-го порядка точности; SMR – явно-неявный метод средней точки; AM4, AB3 – многошаговые методы 4-го и 3-го порядка точности.

Нелинейные явления 000000 0000 0000000000000000

< ∃→

э

Тесты

Тест 1

Стационарный режим вида $\omega = sin(i\pi x)sin(j\pi y)$.

Зависимость погрешностей вычисления от t: а) интеграл завихренности I_{ω} , b) отклонение вектора скорости от точного значения ε_{v} . Параметры расчета: $h_{PS} = 0.1$ и $h_{RK4} = 0.4/5$. Тонкая линия соответствует вычислению при $N_{p} = 20000$, а жирная при $N_{p} = 80000$.

Нелинейные явления 000000 0000 0000000000000000

< ∃⇒

э

Тесты

Тест 2

Эволюция вихревого пятна эллиптической формы.

21 / 52 Говорухин В.Н. Вихревые конфигурации в жидкости и нелинейные явления

Тесты

Тест 3

Вращающиеся мультипольные конфигурации. Численно-аналитические решения были построены в

кіzner, Z.; Khvoles, and R. McWilliams, J. Rotating multipoles on the f- and γ -planes. Phys. Fluids, 2007. Подобные структуры наблюдались в физических экспериментах

van Heijst, G. J. F. and Kloosterziel, R. C. Tripolar vortices in a rotating fluid Nature(London), 1989.

Нелинейные явления 000000 0000 0000000000000000

2

Тесты

S. Le Dizes, Non-axisymmetric vortices in two-dimensional flows, J. Fluid Mech. 406 (2000).

<ロ> (四) (四) (日) (日) (日)

Формирование диполя. Диполь формируется из начального распределения завихренности вида:

$$\omega_0 = 40 (0.5 - y) e^{-100 \left(y - \frac{1}{2}\right)^2} (\tanh(50x - 25) - \tanh(50x - 125)).$$

< ∃→

4 E b

< 1 N

э

000000

Анализ структуры

Поиск стационарных течений

Стационарная задача

$$\omega_x \psi_y - \omega_y \psi_x = 0 \tag{26}$$

$$\Delta \psi = -\omega \tag{27}$$

с граничными условиями (10) и (11). Уравнение (26) эквивалентно соотношению $\omega = F(\psi)$, где F – дифференцируемая функция. Стационарные решения могут быть найдены из уравнения

$$-\triangle \psi = F(\psi) \tag{28}$$

(< Ξ) < Ξ)</p>

Для поиска решений естественно задать некоторую зависимость $\omega = F(\psi)$, а затем решать (28).

000000

Анализ структуры

Анализ устойчивости течений

Задача относительно малых возмущений

Если известно некоторое решение $\hat{\psi}(x,y), \hat{\omega}(x,y)$, то его устойчивость можно исследовать, рассматривая динамику малых возмущений $\xi(x,y,t)$ и $\zeta(x,y,t)$.

Соответствующая система уравнений имеет вид:

$$\zeta_t + \hat{\omega}_x \xi_y + \zeta_x \hat{\psi}_y - \hat{\omega}_y \xi_x - \zeta_y \hat{\psi}_x + \zeta_x \xi_y - \zeta_y \xi_x = 0$$

$$\Delta \xi = -\zeta$$
(29)

Граничные условия определяются видом рассматриваемых возмущений. Система позволяет проводить:

- Линейный анализ устойчивости.
- Нелинейный анализ устойчивости.

Нелинейные явления 000000 0000 00000000000000000

- < ∃ →

Анализ структуры

Анализ перестроек вихревой конфигурации

 $\omega_0(x, y)$ состоит из k вихрей, каждый из них имеет распределение завихренности $\omega^{(i)}(x, y)$ и заполняет односвязную область $S^{(i)}$. $\omega^{(i)}(x, y)$ принимает значения одного знака в $S^{(i)}$, и равна нулю вне области. Области $S^{(i)}$, i = 1, ..., k не пересекаются.

- ∢ ≣ →

Анализ структуры

Общая завихренность вихря $\Omega^{(i)} = \int_{S^{(i)}} \omega^{(i)}(x,y) dS$, координаты центра завихренности

$$x^{(i)} = \frac{1}{\Omega^{(i)}} \int_{S^{(i)}} x \,\omega^{(i)}(x, y) dS, \quad y^{(i)} = \frac{1}{\Omega^{(i)}} \int_{S^{(i)}} y \,\omega^{(i)}(x, y) dS. \tag{30}$$

Для описания структуры вихревой конфигурации в момент времени *t* будем использовать конфигурацию центров завихренности вида (30). Дискретный аналог (30)

$$x^{(k)} \approx \overline{x}^{(k)} = \frac{\sum\limits_{j \in N^{(k)}} x_j \,\omega_j}{\sum\limits_{j \in N^{(k)}} \omega_j}, \quad y^{(k)} \approx \overline{y}^{(k)} = \frac{\sum\limits_{j \in N^{(k)}} y_j \,\omega_j}{\sum\limits_{j \in N^{(k)}} \omega_j}$$
(31)

Предполагается, что N_p выбрано так, что каждое из множеств $N^{(k)}$ содержит количество частиц достаточное для оценки (31).

Нелинейные явления 000000 0000 00000000000000000

Анализ структуры

Эвристические характеристики конфигурации

- Если расстояние *d* между сонаправленными вихрями меньше критической величины *D_c*, то возникают неустойчивые моды, которые приводят к перемешиванию вихревых пятен. Если *d* > *D_c*, то вихри образуют квазистационарную вихревую конфигурацию.
- Перестройка структуры системы сонаправленных вихрей в некоторый момент времени приводит к качественному изменению структуры течения. Отследить перестройки можно вычисляя ориентации троек вихрей с координатами (x⁽ⁱ⁾, y⁽ⁱ⁾), i = 1,2,3

$$\theta_{1,2,3} = \begin{vmatrix} x^{(1)} & y^{(1)} & 1 \\ x^{(2)} & y^{(2)} & 1 \\ x^{(3)} & y^{(3)} & 1 \end{vmatrix}$$
(32)

Нелинейные явления 000000 0000 00000000000000000

Анализ структуры

Локальные показатели Ляпунова

Задача (25) порождает отображение сдвига вдоль траектории за время T: $\mathbf{u}(t_0 + T) = \phi_{t_0}^{t_0 + T} (\mathbf{u}_0).$

Деформации вдоль траектории на конечном времени Т:

$$L = \frac{d\phi_{t_0}^{t_0+T}(\mathbf{u}_0)}{d\mathbf{u}}^* \frac{d\phi_{t_0}^{t_0+T}(\mathbf{u}_0)}{d\mathbf{u}}.$$
 (33)

Максимальное разбегание бесконечно близких частиц происходит вдоль направления собственного вектора соответствующего максимальному собственному значению $\lambda_{max}(L)$ оператора L.

Локальный показатель Ляпунова (максимальный) на временном интервале ${\cal T}$ в начальной точке ${f u}(t_0)$ можно определить следующим образом

$$\sigma_{t_0}^{T}(\mathbf{u}(t_0)) = \frac{1}{|T|} \ln \sqrt{\lambda_{max}(L)}$$
(34)

Отметим, что $\sigma_{t_0}^{\mathsf{T}}(\mathbf{u}(t_0))$ стремится к константе при $\mathsf{T} \to +\infty$.

Нелинейные явления ●ООООО ○ООО ○ОООООООООООООООО

Перемешивание и перенос

Перенос частиц в поле скорости движущегося триполя

イロン イロン イヨン イヨン

æ

Перемешивание и перенос

Говорухин В.Н. 32/52 Вихревые конфигурации в жидкости и нелинейные явления

э

イロト イヨト イヨト イヨト

Перемешивание и перенос

2

イロト イヨト イヨト イヨト

Перемешивание и перенос

 $\epsilon = 0.1$

æ

イロト イヨト イヨト イヨト

Перемешивание и перенос

$$\epsilon = 0.4$$

æ

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト

Перемешивание и перенос

э

Стационарные течения

Стационарные режимы

a)-c)
$$\gamma_+ = \gamma_- = Q_1, \quad \omega_+ = 0$$

d)-f) $\gamma_+ = \gamma_- = Q_1 + 2 Q_2 y + 3 Q_3 y^2, \quad \omega_+ = -2 Q_2 - 6 Q_3 y$

æ

イロト イヨト イヨト イヨト

Стационарные течения

Стационарные течения

Стационарные режимы с зависимостью $\omega = K\psi$.

Метод Бубнова-Галёркина.

$$\psi(x,y) = \gamma(x,y) + \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} C_{i,j} \Phi_{i,j}(x,y)$$
 (35)

 $\gamma(x, y) = \frac{1}{a}(xg_2(y) + (a - x)g_1(y)), \Phi_{i,j}(x, y) = \frac{2}{\sqrt{ab}} \sin \frac{i\pi x}{a} \sin \frac{j\pi y}{b}$ После подстановки и проектирования получаем аналитическое выражение для $C_{i,j}$ для большого набора $g_1(y), g_2(y)$. Примеры режимов для разных K

39 / 52 Говорухин В.Н. Вихревые конфигурации в жидкости и нелинейные явления

æ

イロト イヨト イヨト イヨト

Стационарные течения

Анализ возмущений

Нелинейные явления 000000 •000000000

Диссипативные эффекты

Установление нестационарных режимов

Установление периодического режима

Рис.: Распределение завихренности и линии тока в различные моменты времени. Внизу график зависимости кинетической энергии от времени.

< 17 b

- < ∃ →

- A - E - M

2

э .∃...>

Диссипативные эффекты

Рис.: а) Траектория центра завихренности вихревого пятна. b) Траектории частиц в проточной зоне. с) Зависимость координаты частицы на выходе из канала от координаты на входе. d) Зависимость времени пребывания частицы от координаты на входе.

- < ∃ →

- E - N

< 17 b

э

Диссипативные эффекты

Установление квазипериодического режима

Рис.: Распределение завихренности и линии тока в различные моменты времени. Внизу график зависимости кинетической энергии от времени.

> э .⊒...>

Диссипативные эффекты

Рис.: а) Траектория центра завихренности вихревого пятна. b) Траектории частиц в проточной зоне. с) Зависимость координаты частицы на выходе из канала от координаты на входе. d) Зависимость времени пребывания частицы от координаты на входе.

(本間) (本臣) (本臣) (臣)

Диссипативные эффекты

Сценарий возникновения автоколебаний

Граничные условия $\gamma_+ = \gamma_- = Q_1$, $\omega_+ = \frac{A}{1.0+\sigma(y-0.5)^2}$. В расчетах использовались значения параметров $y_c = \frac{b}{2}$, $\sigma = 50$. Параметр A рассматривался в качестве бифуркационного для исследования возникновения автоколебаний.

Стационарные решения находились как решение задачи

$$-\Delta \psi = \frac{A}{1 + \sigma \left(\frac{\psi}{Q_1} - y_c\right)^2}, \quad \psi\big|_{\partial D} = Q_1 y.$$
(36)

Для анализа устойчивости изучалась спектральная задача для линеаризованной системы для возмущений стационарных режимов. Для аппроксимации этих задач использовались методы конечных разностей. Для расчета динамики — спектрально-вихревой метод.

э .∃...>

Диссипативные эффекты

Рис.: Стационарные режимы для четырех значений параметра А. Изображены линии тока (линии) и распределение завихренности (оттенки серого).

Диссипативные эффекты

Рис.: Собственные значения для шести значений параметра А. Значения из неустойчивого спектра обозначены кружками, а остальные точками.

イロト イロト イヨト

< ∃⇒

э

модели

2

Диссипативные эффекты

Рис.: Графики зависимости $\omega(\psi)$ режимов для четырех значений A при t = 1000. Ряд (a) графиков соответствует всей области D. Ряд (b) для подобласти D при $x < \frac{2}{3}a$, а (b) для $x > \frac{2}{3}a$.

Диссипативные эффекты

Развитый нестационарный режим

Поля завихренности и линии тока при A=2.25 и четырех значений t (верхний рисунок). Зависимость $\Omega = \int_{\Omega} \omega dV$ от времени t (нижний рисунок).

< ∃→

2

- - E - N

- A 🗉 🕨

Диссипативные эффекты

Список литературы I

Юдович В.И. Двумерная нестационарная задача о протекании идеальной несжимаемой жидкости через заданную область // Мат. сб. 1964. Т. 64, № 4. С. 562-588.

Кажихов А.В. Замечание к постановке задачи протекания для уравнений идеальной жидкости // ПММ. 1980. Т.44. № 5. С.947-949.

Говорухин В.Н., Моргулис А.Б., Юдович В.И. Расчет двумерных режимов протекания идеальной несжимаемой жидкости сквозь прямоугольный канал. // Докл. РАН. 2007. Т.412. №4 С.1-5.

Govorukhin V.N., Ilin K.I. Numerical study of an inviscid incompressible fluid through a channel of finite length // Int. J. Numer. Methods Fluids. 2009. V.60. №.12. P.1315-1333.

Говорухин В.Н. Вариант метода вихрей в ячейках для расчета плоских течений идеальной несжимаемой жидкости. // ЖВМ. 2011. Т.51. №6 С.1113-1147.

Govorukhin V.N., Morgulis A.B., Vladimirov V.A. Planar inviscid flows in a channel of finite length: washout, trapping and self-oscillations of vorticity // J. Fluid Mech. 2010. V.659. P.420-472.

- E - N

Диссипативные эффекты

Список литературы II

Говорухин В.Н. Стационарные вихревые структуры при протекании идеальной жидкости через канал // Изв. РАН. МЖГ. 2012. N 2. C. 11-22

Govorukhin V. N. A Meshfree Method for the Analysis of Planar Flows of Inviscid Fluids // Meshfree Methods for Partial Differential Equations VI / edited by M. Griebel, M. A. Schweitzer, Springer Berlin Heidelberg, 2013. - Vol. 89 of Lecture Notes in Computational Science and Engineering. - Pp. 171-180.

Говорухин В. Н. Численный анализ динамики распределенных вихревых конфигураций // Ж. вычисл. матем. и матем. физ. 2016. — Т. 56. — № 8. — C. 1491-1505.

Говорухин В. Н. Параллельная реализация бессеточного метода расчета течений идеальной несжимаемой жидкости // Выч. мет. программирование. 2017. Т. 18. в 2 С 175-186

Govorukhin, V., Zhdanov, I. Steady-state flows of inviscid incompressible fluid and related particle dynamics in rectangular channels // European Journal of Mechanics, B/Fluids, 2018, V. 67, Pp. 280-290,

Диссипативные эффекты

Список литературы III

Говорухин В. Н. О возникновении автоколебаний при протекании идеальной жидкости через канал // Ж. вычисл. матем. и матем. физ. 2019. Т.59. N6. С. 1024-1036.

Говорухин В.Н., Филимонова А.М. Расчет плоских геофизических течений невязкой несжимаемой жидкости бессеточно-спектральным методом // Компьютерные исследования и моделирование. 2019. Т.11. N3. C.413-426.

Говорухин В.Н., Филимонова А.М. Анализ структуры плоских вихревых течений и их изменений во времени // Вычислительная механика сплошных сред. - 2021. - Т. 14. – № 4. – C. 367 – 376.

Govorukhin, V. An extended and improved particle-spectral method for analysis of unsteady inviscid incompressible flows through a channel of finite length // International Journal for Numerical Methods in Fluids, 2023; Vol. 95, N4, Pp. 579-602.

Говорухин В.Н. Перенос пассивных частиц в поле скорости движущегося по плоскости вихревого триполя // Известия высших учебных заведений. Прикладная нелинейная динамика. 2023. Т. 31. вып. 3